Computer Science > Machine Learning
[Submitted on 27 Sep 2021]
Title:ReINTEL Challenge 2020: A Comparative Study of Hybrid Deep Neural Network for Reliable Intelligence Identification on Vietnamese SNSs
View PDFAbstract:The overwhelming abundance of data has created a misinformation crisis. Unverified sensationalism that is designed to grab the readers' short attention span, when crafted with malice, has caused irreparable damage to our society's structure. As a result, determining the reliability of an article has become a crucial task. After various ablation studies, we propose a multi-input model that can effectively leverage both tabular metadata and post content for the task. Applying state-of-the-art finetuning techniques for the pretrained component and training strategies for our complete model, we have achieved a 0.9462 ROC-score on the VLSP private test set.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.