Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 27 Sep 2021]
Title:Leveraging Multiple CNNs for Triaging Medical Workflow
View PDFAbstract:High hospitalization rates due to the global spread of Covid-19 bring about a need for improvements to classical triaging workflows. To this end, convolutional neural networks (CNNs) can effectively differentiate critical from non-critical images so that critical cases may be addressed quickly, so long as there exists some representative image for the illness. Presented is a conglomerate neural network system consisting of multiple VGG16 CNNs; the system trains on weighted skin disease images re-labelled as critical or non-critical, to then attach to input images a critical index between 0 and 10. A critical index offers a more comprehensive rating system compared to binary critical/non-critical labels. Results for batches of input images run through the trained network are promising. A batch is shown being re-ordered by the proposed architecture from most critical to least critical roughly accurately.
Submission history
From: Lakshmi Ghantasala [view email][v1] Mon, 27 Sep 2021 03:59:23 UTC (468 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.