Computer Science > Computer Vision and Pattern Recognition
[Submitted on 27 Sep 2021 (v1), last revised 6 Apr 2022 (this version, v2)]
Title:Machine Learning based Medical Image Deepfake Detection: A Comparative Study
View PDFAbstract:Deep generative networks in recent years have reinforced the need for caution while consuming various modalities of digital information. One avenue of deepfake creation is aligned with injection and removal of tumors from medical scans. Failure to detect medical deepfakes can lead to large setbacks on hospital resources or even loss of life. This paper attempts to address the detection of such attacks with a structured case study. Specifically, we evaluate eight different machine learning algorithms, which including three conventional machine learning methods, support vector machine, random forest, decision tree, and five deep learning models, DenseNet121, DenseNet201, ResNet50, ResNet101, VGG19, on distinguishing between tampered and untampered this http URL deep learning models, the five models are used for feature extraction, then fine-tune for each pre-trained model is performed. The findings of this work show near perfect accuracy in detecting instances of tumor injections and removals.
Submission history
From: Yuxin Wen [view email][v1] Mon, 27 Sep 2021 05:10:55 UTC (1,128 KB)
[v2] Wed, 6 Apr 2022 22:29:25 UTC (4,017 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.