Computer Science > Machine Learning
[Submitted on 27 Sep 2021]
Title:MUTEN: Boosting Gradient-Based Adversarial Attacks via Mutant-Based Ensembles
View PDFAbstract:Deep Neural Networks (DNNs) are vulnerable to adversarial examples, which causes serious threats to security-critical applications. This motivated much research on providing mechanisms to make models more robust against adversarial attacks. Unfortunately, most of these defenses, such as gradient masking, are easily overcome through different attack means. In this paper, we propose MUTEN, a low-cost method to improve the success rate of well-known attacks against gradient-masking models. Our idea is to apply the attacks on an ensemble model which is built by mutating the original model elements after training. As we found out that mutant diversity is a key factor in improving success rate, we design a greedy algorithm for generating diverse mutants efficiently. Experimental results on MNIST, SVHN, and CIFAR10 show that MUTEN can increase the success rate of four attacks by up to 0.45.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.