Statistics > Machine Learning
[Submitted on 27 Sep 2021]
Title:Ridgeless Interpolation with Shallow ReLU Networks in $1D$ is Nearest Neighbor Curvature Extrapolation and Provably Generalizes on Lipschitz Functions
View PDFAbstract:We prove a precise geometric description of all one layer ReLU networks $z(x;\theta)$ with a single linear unit and input/output dimensions equal to one that interpolate a given dataset $\mathcal D=\{(x_i,f(x_i))\}$ and, among all such interpolants, minimize the $\ell_2$-norm of the neuron weights. Such networks can intuitively be thought of as those that minimize the mean-squared error over $\mathcal D$ plus an infinitesimal weight decay penalty. We therefore refer to them as ridgeless ReLU interpolants. Our description proves that, to extrapolate values $z(x;\theta)$ for inputs $x\in (x_i,x_{i+1})$ lying between two consecutive datapoints, a ridgeless ReLU interpolant simply compares the signs of the discrete estimates for the curvature of $f$ at $x_i$ and $x_{i+1}$ derived from the dataset $\mathcal D$. If the curvature estimates at $x_i$ and $x_{i+1}$ have different signs, then $z(x;\theta)$ must be linear on $(x_i,x_{i+1})$. If in contrast the curvature estimates at $x_i$ and $x_{i+1}$ are both positive (resp. negative), then $z(x;\theta)$ is convex (resp. concave) on $(x_i,x_{i+1})$. Our results show that ridgeless ReLU interpolants achieve the best possible generalization for learning $1d$ Lipschitz functions, up to universal constants.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.