Computer Science > Machine Learning
[Submitted on 27 Sep 2021]
Title:An IIoT machine model for achieving consistency in product quality in manufacturing plants
View PDFAbstract:Consistency in product quality is of critical importance in manufacturing. However, achieving a target product quality typically involves balancing a large number of manufacturing attributes. Existing manufacturing practices for dealing with such complexity are driven largely based on human knowledge and experience. The prevalence of manual intervention makes it difficult to perfect manufacturing practices, underscoring the need for a data-driven solution. In this paper, we present an Industrial Internet of Things (IIoT) machine model which enables effective monitoring and control of plant machinery so as to achieve consistency in product quality. We present algorithms that can provide product quality prediction during production, and provide recommendations for machine control. Subsequently, we perform an experimental evaluation of the proposed solution using real data captured from a food processing plant. We show that the proposed algorithms can be used to predict product quality with a high degree of accuracy, thereby enabling effective production monitoring and control.
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.