Computer Science > Computation and Language
[Submitted on 27 Sep 2021]
Title:Challenging the Semi-Supervised VAE Framework for Text Classification
View PDFAbstract:Semi-Supervised Variational Autoencoders (SSVAEs) are widely used models for data efficient learning. In this paper, we question the adequacy of the standard design of sequence SSVAEs for the task of text classification as we exhibit two sources of overcomplexity for which we provide simplifications. These simplifications to SSVAEs preserve their theoretical soundness while providing a number of practical advantages in the semi-supervised setup where the result of training is a text classifier. These simplifications are the removal of (i) the Kullback-Liebler divergence from its objective and (ii) the fully unobserved latent variable from its probabilistic model. These changes relieve users from choosing a prior for their latent variables, make the model smaller and faster, and allow for a better flow of information into the latent variables. We compare the simplified versions to standard SSVAEs on 4 text classification tasks. On top of the above-mentioned simplification, experiments show a speed-up of 26%, while keeping equivalent classification scores. The code to reproduce our experiments is public.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.