Computer Science > Machine Learning
[Submitted on 27 Sep 2021 (v1), last revised 24 Jun 2022 (this version, v2)]
Title:Cluster Attack: Query-based Adversarial Attacks on Graphs with Graph-Dependent Priors
View PDFAbstract:While deep neural networks have achieved great success in graph analysis, recent work has shown that they are vulnerable to adversarial attacks. Compared with adversarial attacks on image classification, performing adversarial attacks on graphs is more challenging because of the discrete and non-differential nature of the adjacent matrix for a graph. In this work, we propose Cluster Attack -- a Graph Injection Attack (GIA) on node classification, which injects fake nodes into the original graph to degenerate the performance of graph neural networks (GNNs) on certain victim nodes while affecting the other nodes as little as possible. We demonstrate that a GIA problem can be equivalently formulated as a graph clustering problem; thus, the discrete optimization problem of the adjacency matrix can be solved in the context of graph clustering. In particular, we propose to measure the similarity between victim nodes by a metric of Adversarial Vulnerability, which is related to how the victim nodes will be affected by the injected fake node, and to cluster the victim nodes accordingly. Our attack is performed in a practical and unnoticeable query-based black-box manner with only a few nodes on the graphs that can be accessed. Theoretical analysis and extensive experiments demonstrate the effectiveness of our method by fooling the node classifiers with only a small number of queries.
Submission history
From: Zhengyi Wang [view email][v1] Mon, 27 Sep 2021 14:19:17 UTC (141 KB)
[v2] Fri, 24 Jun 2022 08:47:19 UTC (1,339 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.