Computer Science > Machine Learning
[Submitted on 21 Sep 2021]
Title:Towards the Classification of Error-Related Potentials using Riemannian Geometry
View PDFAbstract:The error-related potential (ErrP) is an event-related potential (ERP) evoked by an experimental participant's recognition of an error during task performance. ErrPs, originally described by cognitive psychologists, have been adopted for use in brain-computer interfaces (BCIs) for the detection and correction of errors, and the online refinement of decoding algorithms. Riemannian geometry-based feature extraction and classification is a new approach to BCI which shows good performance in a range of experimental paradigms, but has yet to be applied to the classification of ErrPs. Here, we describe an experiment that elicited ErrPs in seven normal participants performing a visual discrimination task. Audio feedback was provided on each trial. We used multi-channel electroencephalogram (EEG) recordings to classify ErrPs (success/failure), comparing a Riemannian geometry-based method to a traditional approach that computes time-point features. Overall, the Riemannian approach outperformed the traditional approach (78.2% versus 75.9% accuracy, p < 0.05); this difference was statistically significant (p < 0.05) in three of seven participants. These results indicate that the Riemannian approach better captured the features from feedback-elicited ErrPs, and may have application in BCI for error detection and correction.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.