Computer Science > Neural and Evolutionary Computing
[Submitted on 14 Sep 2021 (v1), last revised 11 Oct 2021 (this version, v2)]
Title:Oscillatory Fourier Neural Network: A Compact and Efficient Architecture for Sequential Processing
View PDFAbstract:Tremendous progress has been made in sequential processing with the recent advances in recurrent neural networks. However, recurrent architectures face the challenge of exploding/vanishing gradients during training, and require significant computational resources to execute back-propagation through time. Moreover, large models are typically needed for executing complex sequential tasks. To address these challenges, we propose a novel neuron model that has cosine activation with a time varying component for sequential processing. The proposed neuron provides an efficient building block for projecting sequential inputs into spectral domain, which helps to retain long-term dependencies with minimal extra model parameters and computation. A new type of recurrent network architecture, named Oscillatory Fourier Neural Network, based on the proposed neuron is presented and applied to various types of sequential tasks. We demonstrate that recurrent neural network with the proposed neuron model is mathematically equivalent to a simplified form of discrete Fourier transform applied onto periodical activation. In particular, the computationally intensive back-propagation through time in training is eliminated, leading to faster training while achieving the state of the art inference accuracy in a diverse group of sequential tasks. For instance, applying the proposed model to sentiment analysis on IMDB review dataset reaches 89.4% test accuracy within 5 epochs, accompanied by over 35x reduction in the model size compared to LSTM. The proposed novel RNN architecture is well poised for intelligent sequential processing in resource constrained hardware.
Submission history
From: Bing Han [view email][v1] Tue, 14 Sep 2021 19:08:07 UTC (5,022 KB)
[v2] Mon, 11 Oct 2021 18:17:12 UTC (5,117 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.