Computer Science > Machine Learning
[Submitted on 27 Sep 2021]
Title:Speeding-up One-vs-All Training for Extreme Classification via Smart Initialization
View PDFAbstract:In this paper we show that a simple, data dependent way of setting the initial vector can be used to substantially speed up the training of linear one-versus-all (OVA) classifiers in extreme multi-label classification (XMC). We discuss the problem of choosing the initial weights from the perspective of three goals. We want to start in a region of weight space a) with low loss value, b) that is favourable for second-order optimization, and c) where the conjugate-gradient (CG) calculations can be performed quickly. For margin losses, such an initialization is achieved by selecting the initial vector such that it separates the mean of all positive (relevant for a label) instances from the mean of all negatives -- two quantities that can be calculated quickly for the highly imbalanced binary problems occurring in XMC. We demonstrate a speedup of $\approx 3\times$ for training with squared hinge loss on a variety of XMC datasets. This comes in part from the reduced number of iterations that need to be performed due to starting closer to the solution, and in part from an implicit negative mining effect that allows to ignore easy negatives in the CG step. Because of the convex nature of the optimization problem, the speedup is achieved without any degradation in classification accuracy.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.