Computer Science > Machine Learning
[Submitted on 27 Sep 2021 (v1), last revised 24 Aug 2022 (this version, v3)]
Title:FedIPR: Ownership Verification for Federated Deep Neural Network Models
View PDFAbstract:Federated learning models are collaboratively developed upon valuable training data owned by multiple parties. During the development and deployment of federated models, they are exposed to risks including illegal copying, re-distribution, misuse and/or free-riding. To address these risks, the ownership verification of federated learning models is a prerequisite that protects federated learning model intellectual property rights (IPR) i.e., FedIPR. We propose a novel federated deep neural network (FedDNN) ownership verification scheme that allows private watermarks to be embedded and verified to claim legitimate IPR of FedDNN models. In the proposed scheme, each client independently verifies the existence of the model watermarks and claims respective ownership of the federated model without disclosing neither private training data nor private watermark information. The effectiveness of embedded watermarks is theoretically justified by the rigorous analysis of conditions under which watermarks can be privately embedded and detected by multiple clients. Moreover, extensive experimental results on computer vision and natural language processing tasks demonstrate that varying bit-length watermarks can be embedded and reliably detected without compromising original model performances. Our watermarking scheme is also resilient to various federated training settings and robust against removal attacks.
Submission history
From: Bowen Li [view email][v1] Mon, 27 Sep 2021 12:51:24 UTC (1,750 KB)
[v2] Wed, 23 Mar 2022 14:05:45 UTC (6,027 KB)
[v3] Wed, 24 Aug 2022 05:49:52 UTC (2,829 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.