Computer Science > Machine Learning
[Submitted on 27 Sep 2021]
Title:DOODLER: Determining Out-Of-Distribution Likelihood from Encoder Reconstructions
View PDFAbstract:Deep Learning models possess two key traits that, in combination, make their use in the real world a risky prospect. One, they do not typically generalize well outside of the distribution for which they were trained, and two, they tend to exhibit confident behavior regardless of whether or not they are producing meaningful outputs. While Deep Learning possesses immense power to solve realistic, high-dimensional problems, these traits in concert make it difficult to have confidence in their real-world applications. To overcome this difficulty, the task of Out-Of-Distribution (OOD) Detection has been defined, to determine when a model has received an input from outside of the distribution for which it is trained to operate.
This paper introduces and examines a novel methodology, DOODLER, for OOD Detection, which directly leverages the traits which result in its necessity. By training a Variational Auto-Encoder (VAE) on the same data as another Deep Learning model, the VAE learns to accurately reconstruct In-Distribution (ID) inputs, but not to reconstruct OOD inputs, meaning that its failure state can be used to perform OOD Detection. Unlike other work in the area, DOODLER requires only very weak assumptions about the existence of an OOD dataset, allowing for more realistic application. DOODLER also enables pixel-wise segmentations of input images by OOD likelihood, and experimental results show that it matches or outperforms methodologies that operate under the same constraints.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.