High Energy Physics - Phenomenology
[Submitted on 27 Sep 2021 (v1), last revised 15 May 2022 (this version, v3)]
Title:Constraining anomalous Higgs boson couplings to virtual photons
View PDFAbstract:We present a study of Higgs boson production in vector boson fusion and in association with a vector boson and its decay to two vector bosons, with a focus on the treatment of virtual loops and virtual photons. Our analysis is performed with the JHU generator framework. Comparisons are made to several other frameworks, and the results are expressed in terms of an effective field theory. New features of this study include a proposal on how to handle singularities involving Higgs boson decays to light fermions via photons, calculation of the partial Higgs boson width in the presence of anomalous couplings to photons, a comparison of the next-to-leading-order electroweak corrections to effects from effective couplings, and phenomenological observations regarding the special role of intermediate photons in analysis of LHC data in the effective field theory framework. Some of these features are illustrated with projections for experimental measurements with the full LHC and HL-LHC datasets.
Submission history
From: Jeffrey Davis [view email][v1] Mon, 27 Sep 2021 21:58:45 UTC (1,519 KB)
[v2] Thu, 27 Jan 2022 19:08:07 UTC (1,551 KB)
[v3] Sun, 15 May 2022 05:11:18 UTC (1,552 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.