Computer Science > Machine Learning
[Submitted on 27 Sep 2021]
Title:Automated Estimation of Construction Equipment Emission using Inertial Sensors and Machine Learning Models
View PDFAbstract:The construction industry is one of the main producers of greenhouse gasses (GHG). Quantifying the amount of air pollutants including GHG emissions during a construction project has become an additional project objective to traditional metrics such as time, cost, and safety in many parts of the world. A major contributor to air pollution during construction is the use of heavy equipment and thus their efficient operation and management can substantially reduce the harm to the environment. Although the on-road vehicle emission prediction is a widely researched topic, construction equipment emission measurement and reduction have received very little attention. This paper describes the development and deployment of a novel framework that uses machine learning (ML) methods to predict the level of emissions from heavy construction equipment monitored via an Internet of Things (IoT) system comprised of accelerometer and gyroscope sensors. The developed framework was validated using an excavator performing real-world construction work. A portable emission measurement system (PEMS) was employed along with the inertial sensors to record data including the amount of CO, NOX, CO2, SO2, and CH4 pollutions emitted by the equipment. Different ML algorithms were developed and compared to identify the best model to predict emission levels from inertial sensors data. The results showed that Random Forest with the coefficient of determination (R2) of 0.94, 0.91 and 0.94 for CO, NOX, CO2, respectively was the best algorithm among different models evaluated in this study.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.