Mathematics > Optimization and Control
[Submitted on 27 Sep 2021 (v1), last revised 12 Apr 2023 (this version, v2)]
Title:Curvature-Aware Derivative-Free Optimization
View PDFAbstract:The paper discusses derivative-free optimization (DFO), which involves minimizing a function without access to gradients or directional derivatives, only function evaluations. Classical DFO methods, which mimic gradient-based methods, such as Nelder-Mead and direct search have limited scalability for high-dimensional problems. Zeroth-order methods have been gaining popularity due to the demands of large-scale machine learning applications, and the paper focuses on the selection of the step size $\alpha_k$ in these methods. The proposed approach, called Curvature-Aware Random Search (CARS), uses first- and second-order finite difference approximations to compute a candidate $\alpha_{+}$. We prove that for strongly convex objective functions, CARS converges linearly provided that the search direction is drawn from a distribution satisfying very mild conditions. We also present a Cubic Regularized variant of CARS, named CARS-CR, which converges in a rate of $\mathcal{O}(k^{-1})$ without the assumption of strong convexity. Numerical experiments show that CARS and CARS-CR match or exceed the state-of-the-arts on benchmark problem sets.
Submission history
From: Bumsu Kim [view email][v1] Mon, 27 Sep 2021 23:22:47 UTC (619 KB)
[v2] Wed, 12 Apr 2023 04:55:01 UTC (479 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.