Computer Science > Machine Learning
[Submitted on 28 Sep 2021 (v1), last revised 27 Apr 2022 (this version, v2)]
Title:DynG2G: An Efficient Stochastic Graph Embedding Method for Temporal Graphs
View PDFAbstract:Dynamic graph embedding has gained great attention recently due to its capability of learning low dimensional graph representations for complex temporal graphs with high accuracy. However, recent advances mostly focus on learning node embeddings as deterministic "vectors" for static graphs yet disregarding the key graph temporal dynamics and the evolving uncertainties associated with node embedding in the latent space. In this work, we propose an efficient stochastic dynamic graph embedding method (DynG2G) that applies an inductive feed-forward encoder trained with node triplet-based contrastive loss. Every node per timestamp is encoded as a time-dependent probabilistic multivariate Gaussian distribution in the latent space, hence we can quantify the node embedding uncertainty on-the-fly. We adopted eight different benchmarks that represent diversity in size (from 96 nodes to 87,626 and from 13,398 edges to 4,870,863) and diversity in dynamics. We demonstrate via extensive experiments on these eight dynamic graph benchmarks that DynG2G achieves new state-of-the-art performance in capturing the underlying temporal node embeddings. We also demonstrate that DynG2G can predict the evolving node embedding uncertainty, which plays a crucial role in quantifying the intrinsic dimensionality of the dynamical system over time. We obtain a universal relation of the optimal embedding dimension, $L_o$, versus the effective dimensionality of uncertainty, $D_u$, and we infer that $L_o=D_u$ for all cases. This implies that the uncertainty quantification approach we employ in the DynG2G correctly captures the intrinsic dimensionality of the dynamics of such evolving graphs despite the diverse nature and composition of the graphs at each timestamp. Moreover, this $L_0 - D_u$ correlation provides a clear path to select adaptively the optimum embedding size at each timestamp by setting $L \ge D_u$.
Submission history
From: Mengjia Xu [view email][v1] Tue, 28 Sep 2021 02:36:56 UTC (2,502 KB)
[v2] Wed, 27 Apr 2022 20:49:30 UTC (5,216 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.