Computer Science > Machine Learning
[Submitted on 28 Sep 2021]
Title:An Adaptive Deep Learning Framework for Day-ahead Forecasting of Photovoltaic Power Generation
View PDFAbstract:Accurate forecasts of photovoltaic power generation (PVPG) are essential to optimize operations between energy supply and demand. Recently, the propagation of sensors and smart meters has produced an enormous volume of data, which supports the development of data based PVPG forecasting. Although emerging deep learning (DL) models, such as the long short-term memory (LSTM) model, based on historical data, have provided effective solutions for PVPG forecasting with great successes, these models utilize offline learning. As a result, DL models cannot take advantage of the opportunity to learn from newly-arrived data, and are unable to handle concept drift caused by installing extra PV units and unforeseen PV unit failures. Consequently, to improve day-ahead PVPG forecasting accuracy, as well as eliminate the impacts of concept drift, this paper proposes an adaptive LSTM (AD-LSTM) model, which is a DL framework that can not only acquire general knowledge from historical data, but also dynamically learn specific knowledge from newly-arrived data. A two-phase adaptive learning strategy (TP-ALS) is integrated into AD-LSTM, and a sliding window (SDWIN) algorithm is proposed, to detect concept drift in PV systems. Multiple datasets from PV systems are utilized to assess the feasibility and effectiveness of the proposed approaches. The developed AD-LSTM model demonstrates greater forecasting capability than the offline LSTM model, particularly in the presence of concept drift. Additionally, the proposed AD-LSTM model also achieves superior performance in terms of day-ahead PVPG forecasting compared to other traditional machine learning models and statistical models in the literature.
Current browse context:
cs.LG
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.