Computer Science > Machine Learning
[Submitted on 28 Sep 2021]
Title:Lithium-ion Battery State of Health Estimation based on Cycle Synchronization using Dynamic Time Warping
View PDFAbstract:The state of health (SOH) estimation plays an essential role in battery-powered applications to avoid unexpected breakdowns due to battery capacity fading. However, few studies have paid attention to the problem of uneven length of degrading cycles, simply employing manual operation or leaving to the automatic processing mechanism of advanced machine learning models, like long short-term memory (LSTM). As a result, this causes information loss and caps the full capability of the data-driven SOH estimation models. To address this challenge, this paper proposes an innovative cycle synchronization way to change the existing coordinate system using dynamic time warping, not only enabling the equal length inputs of the estimation model but also preserving all information. By exploiting the time information of the time series, the proposed method embeds the time index and the original measurements into a novel indicator to reflect the battery degradation status, which could have the same length over cycles. Adopting the LSTM as the basic estimation model, the cycle synchronization-based SOH model could significantly improve the prediction accuracy by more than 30% compared to the traditional LSTM.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.