Computer Science > Information Retrieval
[Submitted on 28 Sep 2021]
Title:Concept-Aware Denoising Graph Neural Network for Micro-Video Recommendation
View PDFAbstract:Recently, micro-video sharing platforms such as Kuaishou and Tiktok have become a major source of information for people's lives. Thanks to the large traffic volume, short video lifespan and streaming fashion of these services, it has become more and more pressing to improve the existing recommender systems to accommodate these challenges in a cost-effective way. In this paper, we propose a novel concept-aware denoising graph neural network (named CONDE) for micro-video recommendation. CONDE consists of a three-phase graph convolution process to derive user and micro-video representations: warm-up propagation, graph denoising and preference refinement. A heterogeneous tripartite graph is constructed by connecting user nodes with video nodes, and video nodes with associated concept nodes, extracted from captions and comments of the videos. To address the noisy information in the graph, we introduce a user-oriented graph denoising phase to extract a subgraph which can better reflect the user's preference. Despite the main focus of micro-video recommendation in this paper, we also show that our method can be generalized to other types of tasks. Therefore, we also conduct empirical studies on a well-known public E-commerce dataset. The experimental results suggest that the proposed CONDE achieves significantly better recommendation performance than the existing state-of-the-art solutions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.