Computer Science > Robotics
[Submitted on 28 Sep 2021 (v1), last revised 3 Mar 2022 (this version, v2)]
Title:Adaptive Informative Path Planning Using Deep Reinforcement Learning for UAV-based Active Sensing
View PDFAbstract:Aerial robots are increasingly being utilized for environmental monitoring and exploration. However, a key challenge is efficiently planning paths to maximize the information value of acquired data as an initially unknown environment is explored. To address this, we propose a new approach for informative path planning based on deep reinforcement learning (RL). Combining recent advances in RL and robotic applications, our method combines tree search with an offline-learned neural network predicting informative sensing actions. We introduce several components making our approach applicable for robotic tasks with high-dimensional state and large action spaces. By deploying the trained network during a mission, our method enables sample-efficient online replanning on platforms with limited computational resources. Simulations show that our approach performs on par with existing methods while reducing runtime by 8-10x. We validate its performance using real-world surface temperature data.
Submission history
From: Julius Rückin [view email][v1] Tue, 28 Sep 2021 09:00:55 UTC (2,906 KB)
[v2] Thu, 3 Mar 2022 13:22:21 UTC (3,865 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.