Computer Science > Machine Learning
[Submitted on 28 Sep 2021]
Title:Confusion-based rank similarity filters for computationally-efficient machine learning on high dimensional data
View PDFAbstract:We introduce a novel type of computationally efficient artificial neural network (ANN) called the rank similarity filter (RSF). RSFs can be used to both transform and classify nonlinearly separable datasets with many data points and dimensions. The weights of RSF are set using the rank orders of features in a data point, or optionally the 'confusion' adjusted ranks between features (determined from their distributions in the dataset). The activation strength of a filter determines its similarity to other points in the dataset, a measure related to cosine similarity. The activation of many RSFs maps samples into a new nonlinear space suitable for linear classification (the rank similarity transform (RST)). We additionally used this method to create the nonlinear rank similarity classifier (RSC), which is a fast and accurate multiclass classifier, and the nonlinear rank similarity probabilistic classifier (RSPC), which is an extension to the multilabel case. We evaluated the classifiers on multiple datasets and RSC was competitive with existing classifiers but with superior computational efficiency. Open-source code for RST, RSC and RSPC was written in Python using the popular scikit-learn framework to make it easily accessible. In future extensions the algorithm can be applied to specialised hardware suitable for the parallelization of an ANN (GPU) and a Spiking Neural Network (neuromorphic computing) with corresponding performance gains. This makes RSF a promising solution to the problem of efficient analysis of nonlinearly separable data.
Submission history
From: Katharine Shapcott [view email][v1] Tue, 28 Sep 2021 10:53:38 UTC (1,823 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.