Computer Science > Information Theory
[Submitted on 28 Sep 2021]
Title:Weighted Secrecy Coverage Analysis and the Impact of Friendly Jamming over UAV-Enabled Networks
View PDFAbstract:In 5G and beyond networks, Unmanned Aerial Vehicles (UAV) are an attractive solution to enhance the secrecy of a wireless systems by exploiting their predominant LOS links and spacial manoeuvrability to introduce a friendly jamming. In this work, we investigate the impact of two cooperative UAV-based jammers on the secrecy performance of a ground wireless wiretap channel by considering secrecy-area related metrics, the jamming coverage and jamming efficiency. Moreover, we propose a hybrid metric, the so-called Weighted Secrecy Coverage (WSC) that can be used as a metric for gaining insights on the optimal deployments of the UAV jammers to provide the best exploration of jamming signals. For evaluating these metrics, we derive a closed-form position-based metric, the secrecy improvement, and propose an analogous computationally simpler metric. Our simulations show that a balanced power allocation between the two UAVs leads to the best performances, as well as a symmetrical positioning behind the line of sight between the legitimate transmitter and receiver. Moreover, there exist an optimal UAV height for the jammers. Finally, we propose a sub-optimal and simpler problem for the maximisation of the WSC.
Submission history
From: Xavier Alejandro Flores Cabezas [view email][v1] Tue, 28 Sep 2021 11:44:41 UTC (642 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.