Computer Science > Computer Vision and Pattern Recognition
[Submitted on 28 Sep 2021 (v1), last revised 22 Apr 2022 (this version, v3)]
Title:Adaptive Attribute and Structure Subspace Clustering Network
View PDFAbstract:Deep self-expressiveness-based subspace clustering methods have demonstrated effectiveness. However, existing works only consider the attribute information to conduct the self-expressiveness, which may limit the clustering performance. In this paper, we propose a novel adaptive attribute and structure subspace clustering network (AASSC-Net) to simultaneously consider the attribute and structure information in an adaptive graph fusion manner. Specifically, we first exploit an auto-encoder to represent input data samples with latent features for the construction of an attribute matrix. We also construct a mixed signed and symmetric structure matrix to capture the local geometric structure underlying data samples. Then, we perform self-expressiveness on the constructed attribute and structure matrices to learn their affinity graphs separately. Finally, we design a novel attention-based fusion module to adaptively leverage these two affinity graphs to construct a more discriminative affinity graph. Extensive experimental results on commonly used benchmark datasets demonstrate that our AASSC-Net significantly outperforms state-of-the-art methods. In addition, we conduct comprehensive ablation studies to discuss the effectiveness of the designed modules. The code will be publicly available at this https URL.
Submission history
From: Zhihao Peng [view email][v1] Tue, 28 Sep 2021 14:00:57 UTC (3,052 KB)
[v2] Mon, 28 Mar 2022 16:55:46 UTC (2,113 KB)
[v3] Fri, 22 Apr 2022 09:08:28 UTC (2,900 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.