Computer Science > Neural and Evolutionary Computing
[Submitted on 10 Jul 2021]
Title:Meta-aprendizado para otimizacao de parametros de redes neurais
View PDFAbstract:The optimization of Artificial Neural Networks (ANNs) is an important task to the success of using these models in real-world applications. The solutions adopted to this task are expensive in general, involving trial-and-error procedures or expert knowledge which are not always available. In this work, we investigated the use of meta-learning to the optimization of ANNs. Meta-learning is a research field aiming to automatically acquiring knowledge which relates features of the learning problems to the performance of the learning algorithms. The meta-learning techniques were originally proposed and evaluated to the algorithm selection problem and after to the optimization of parameters for Support Vector Machines. However, meta-learning can be adopted as a more general strategy to optimize ANN parameters, which motivates new efforts in this research direction. In the current work, we performed a case study using meta-learning to choose the number of hidden nodes for MLP networks, which is an important parameter to be defined aiming a good networks performance. In our work, we generated a base of meta-examples associated to 93 regression problems. Each meta-example was generated from a regression problem and stored: 16 features describing the problem (e.g., number of attributes and correlation among the problem attributes) and the best number of nodes for this problem, empirically chosen from a range of possible values. This set of meta-examples was given as input to a meta-learner which was able to predict the best number of nodes for new problems based on their features. The experiments performed in this case study revealed satisfactory results.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.