Computer Science > Machine Learning
[Submitted on 31 Aug 2021]
Title:Deep Generative Modeling for Protein Design
View PDFAbstract:Deep learning approaches have produced substantial breakthroughs in fields such as image classification and natural language processing and are making rapid inroads in the area of protein design. Many generative models of proteins have been developed that encompass all known protein sequences, model specific protein families, or extrapolate the dynamics of individual proteins. Those generative models can learn protein representations that are often more informative of protein structure and function than hand-engineered features. Furthermore, they can be used to quickly propose millions of novel proteins that resemble the native counterparts in terms of expression level, stability, or other attributes. The protein design process can further be guided by discriminative oracles to select candidates with the highest probability of having the desired properties. In this review, we discuss five classes of generative models that have been most successful at modeling proteins and provide a framework for model guided protein design.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.