Computer Science > Computer Vision and Pattern Recognition
[Submitted on 28 Sep 2021 (v1), last revised 29 Sep 2021 (this version, v2)]
Title:A Contrastive Learning Approach to Auroral Identification and Classification
View PDFAbstract:Unsupervised learning algorithms are beginning to achieve accuracies comparable to their supervised counterparts on benchmark computer vision tasks, but their utility for practical applications has not yet been demonstrated. In this work, we present a novel application of unsupervised learning to the task of auroral image classification. Specifically, we modify and adapt the Simple framework for Contrastive Learning of Representations (SimCLR) algorithm to learn representations of auroral images in a recently released auroral image dataset constructed using image data from Time History of Events and Macroscale Interactions during Substorms (THEMIS) all-sky imagers. We demonstrate that (a) simple linear classifiers fit to the learned representations of the images achieve state-of-the-art classification performance, improving the classification accuracy by almost 10 percentage points over the current benchmark; and (b) the learned representations naturally cluster into more clusters than exist manually assigned categories, suggesting that existing categorizations are overly coarse and may obscure important connections between auroral types, near-earth solar wind conditions, and geomagnetic disturbances at the earth's surface. Moreover, our model is much lighter than the previous benchmark on this dataset, requiring in the area of fewer than 25\% of the number of parameters. Our approach exceeds an established threshold for operational purposes, demonstrating readiness for deployment and utilization.
Submission history
From: Jeremiah Johnson [view email][v1] Tue, 28 Sep 2021 17:51:25 UTC (5,341 KB)
[v2] Wed, 29 Sep 2021 02:08:10 UTC (5,341 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.