Physics > Medical Physics
[Submitted on 28 Sep 2021]
Title:A framework for quantitative analysis of Computed Tomography images of viral pneumonitis: radiomic features in COVID and non-COVID patients
View PDFAbstract:Purpose: to optimize a pipeline of clinical data gathering and CT images processing implemented during the COVID-19 pandemic crisis and to develop artificial intelligence model for different of viral pneumonia. Methods: 1028 chest CT image of patients with positive swab were segmented automatically for lung extraction. A Gaussian model developed in Python language was applied to calculate quantitative metrics (QM) describing well-aerated and ill portions of the lungs from the histogram distribution of lung CT numbers in both lungs of each image and in four geometrical subdivision. Furthermore, radiomic features (RF) of first and second order were extracted from bilateral lungs using PyRadiomic tools. QM and RF were used to develop 4 different Multi-Layer Perceptron (MLP) classifier to discriminate images of patients with COVID (n=646) and non-COVID (n=382) viral pneumonia. Results: The Gaussian model applied to lung CT histogram correctly described healthy parenchyma 94% of the patients. The resulting accuracy of the models for COVID diagnosis were in the range 0.76-0.87, as the integral of the receiver operating curve. The best diagnostic performances were associated to the model based on RF of first and second order, with 21 relevant features after LASSO regression and an accuracy of 0.81$\pm$0.02 after 4-fold cross validation Conclusions: Despite these results were obtained with CT images from a single center, a platform for extracting useful quantitative metrics from CT images was developed and optimized. Four artificial intelligence-based models for classifying patients with COVID and non-COVID viral pneumonia were developed and compared showing overall good diagnostic performances
Current browse context:
physics.med-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.