Computer Science > Information Theory
[Submitted on 28 Sep 2021 (v1), last revised 4 Oct 2021 (this version, v2)]
Title:Robust recovery of bandlimited graph signals via randomized dynamical sampling
View PDFAbstract:Heat diffusion processes have found wide applications in modelling dynamical systems over graphs. In this paper, we consider the recovery of a $k$-bandlimited graph signal that is an initial signal of a heat diffusion process from its space-time samples. We propose three random space-time sampling regimes, termed dynamical sampling techniques, that consist in selecting a small subset of space-time nodes at random according to some probability distribution. We show that the number of space-time samples required to ensure stable recovery for each regime depends on a parameter called the spectral graph weighted coherence, that depends on the interplay between the dynamics over the graphs and sampling probability distributions. In optimal scenarios, no more than $\mathcal{O}(k \log(k))$ space-time samples are sufficient to ensure accurate and stable recovery of all $k$-bandlimited signals. In any case, dynamical sampling typically requires much fewer spatial samples than the static case by leveraging the temporal information. Then, we propose a computationally efficient method to reconstruct $k$-bandlimited signals from their space-time samples. We prove that it yields accurate reconstructions and that it is also stable to noise. Finally, we test dynamical sampling techniques on a wide variety of graphs. The numerical results support our theoretical findings and demonstrate the efficiency.
Submission history
From: Sui Tang [view email][v1] Tue, 28 Sep 2021 22:44:11 UTC (2,988 KB)
[v2] Mon, 4 Oct 2021 00:44:37 UTC (2,650 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.