Statistics > Machine Learning
[Submitted on 29 Sep 2021]
Title:Non-stationary Gaussian process discriminant analysis with variable selection for high-dimensional functional data
View PDFAbstract:High-dimensional classification and feature selection tasks are ubiquitous with the recent advancement in data acquisition technology. In several application areas such as biology, genomics and proteomics, the data are often functional in their nature and exhibit a degree of roughness and non-stationarity. These structures pose additional challenges to commonly used methods that rely mainly on a two-stage approach performing variable selection and classification separately. We propose in this work a novel Gaussian process discriminant analysis (GPDA) that combines these steps in a unified framework. Our model is a two-layer non-stationary Gaussian process coupled with an Ising prior to identify differentially-distributed locations. Scalable inference is achieved via developing a variational scheme that exploits advances in the use of sparse inverse covariance matrices. We demonstrate the performance of our methodology on simulated datasets and two proteomics datasets: breast cancer and SARS-CoV-2. Our approach distinguishes itself by offering explainability as well as uncertainty quantification in addition to low computational cost, which are crucial to increase trust and social acceptance of data-driven tools.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.