Statistics > Machine Learning
[Submitted on 29 Sep 2021 (v1), last revised 23 Feb 2023 (this version, v2)]
Title:Spread Flows for Manifold Modelling
View PDFAbstract:Flow-based models typically define a latent space with dimensionality identical to the observational space. In many problems, however, the data does not populate the full ambient data space that they natively reside in, rather inhabiting a lower-dimensional manifold. In such scenarios, flow-based models are unable to represent data structures exactly as their densities will always have support off the data manifold, potentially resulting in degradation of model performance. To address this issue, we propose to learn a manifold prior for flow models that leverage the recently proposed spread divergence towards fixing the crucial problem; the KL divergence and maximum likelihood estimation are ill-defined for manifold learning. In addition to improving both sample quality and representation quality, an auxiliary benefit enabled by our approach is the ability to identify the intrinsic dimension of the manifold distribution.
Submission history
From: Mingtian Zhang [view email][v1] Wed, 29 Sep 2021 06:48:01 UTC (4,265 KB)
[v2] Thu, 23 Feb 2023 14:10:45 UTC (4,753 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.