Computer Science > Computation and Language
[Submitted on 29 Sep 2021]
Title:Hierarchical Character Tagger for Short Text Spelling Error Correction
View PDFAbstract:State-of-the-art approaches to spelling error correction problem include Transformer-based Seq2Seq models, which require large training sets and suffer from slow inference time; and sequence labeling models based on Transformer encoders like BERT, which involve token-level label space and therefore a large pre-defined vocabulary dictionary. In this paper we present a Hierarchical Character Tagger model, or HCTagger, for short text spelling error correction. We use a pre-trained language model at the character level as a text encoder, and then predict character-level edits to transform the original text into its error-free form with a much smaller label space. For decoding, we propose a hierarchical multi-task approach to alleviate the issue of long-tail label distribution without introducing extra model parameters. Experiments on two public misspelling correction datasets demonstrate that HCTagger is an accurate and much faster approach than many existing models.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.