Quantum Physics
[Submitted on 29 Sep 2021]
Title:n-Qubit Operations on Sphere and Queueing Scaling Limits for Programmable Quantum Computer
View PDFAbstract:We study n-qubit operation rules on (n+1)-sphere with the target to help developing a (photon or other technique) based programmable quantum computer. In the meanwhile, we derive the scaling limits (called reflecting Gaussian random fields on a (n+1)-sphere) for n-qubit quantum computer based queueing systems under two different heavy traffic regimes. The queueing systems are with multiple classes of users and batch quantum random walks over the $(n+1)$-sphere as arrival inputs. In the first regime, the qubit number $n$ is fixed and the scaling is in terms of both time and space. Under this regime, performance modeling during deriving the scaling limit in terms of balancing the arrival and service rates under first-in first-out and work conserving service policy is conducted. In the second regime, besides the time and space scaling parameters, the qubit number $n$ itself is also considered as a varying scaling parameter with the additional aim to find a suitable number of qubits for the design of a quantum computer. This regime is in contrast to the well-known Halfin-Whitt regime.
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.