Computer Science > Machine Learning
[Submitted on 29 Sep 2021]
Title:(Machine) Learning to Improve the Empirical Performance of Discrete Algorithms
View PDFAbstract:This paper discusses a data-driven, empirically-based framework to make algorithmic decisions or recommendations without expert knowledge. We improve the performance of two algorithmic case studies: the selection of a pivot rule for the Simplex method and the selection of an all-pair shortest paths algorithm. We train machine learning methods to select the optimal algorithm for given data without human expert opinion. We use two types of techniques, neural networks and boosted decision trees. We concluded, based on our experiments, that:
1) Our selection framework recommends various pivot rules that improve overall total performance over just using a fixed default pivot rule.
Over many years experts identified steepest-edge pivot rule as a favorite pivot rule. Our data analysis corroborates that the number of iterations by steepest-edge is no more than 4 percent more than the optimal selection which corroborates human expert knowledge, but this time the knowledge was obtained using machine learning. Here our recommendation system is best when using gradient boosted trees.
2) For the all-pairs shortest path problem, the models trained made a large improvement and our selection is on average .07 percent away from the optimal choice. The conclusions do not seem to be affected by the machine learning method we used.
We tried to make a parallel analysis of both algorithmic problems, but it is clear that there are intrinsic differences. For example, in the all-pairs shortest path problem the graph density is a reasonable predictor, but there is no analogous single parameter for decisions in the Simplex method.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.