Statistics > Machine Learning
[Submitted on 29 Sep 2021]
Title:A gradient-based variable selection for binary classification in reproducing kernel Hilbert space
View PDFAbstract:Variable selection is essential in high-dimensional data analysis. Although various variable selection methods have been developed, most rely on the linear model assumption. This article proposes a nonparametric variable selection method for the large-margin classifier defined by reproducing the kernel Hilbert space (RKHS). we propose a gradient-based representation of the large-margin classifier and then regularize the gradient functions by the group-lasso penalty to obtain sparse gradients that naturally lead to the variable selection. The groupwise-majorization-decent algorithm (GMD, Yang and Zou, 2015) is proposed to efficiently solve the proposed problem with a large number of parameters. We employ the strong sequential rule (Tibshirani et al., 2012) to facilitate the tuning procedure. The selection consistency of the proposed method is established by obtaining the risk bound of the estimated classifier and its gradient. Finally, we demonstrate the promising performance of the proposed method through simulations and real data illustration.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.