Computer Science > Machine Learning
[Submitted on 29 Sep 2021 (v1), last revised 1 Oct 2021 (this version, v2)]
Title:Self-Supervised Learning for 3D Medical Image Analysis using 3D SimCLR and Monte Carlo Dropout
View PDFAbstract:Self-supervised learning methods can be used to learn meaningful representations from unlabeled data that can be transferred to supervised downstream tasks to reduce the need for labeled data. In this paper, we propose a 3D self-supervised method that is based on the contrastive (SimCLR) method. Additionally, we show that employing Bayesian neural networks (with Monte-Carlo Dropout) during the inference phase can further enhance the results on the downstream tasks. We showcase our models on two medical imaging segmentation tasks: i) Brain Tumor Segmentation from 3D MRI, ii) Pancreas Tumor Segmentation from 3D CT. Our experimental results demonstrate the benefits of our proposed methods in both downstream data-efficiency and performance.
Submission history
From: Yamen Ali [view email][v1] Wed, 29 Sep 2021 09:15:41 UTC (1,438 KB)
[v2] Fri, 1 Oct 2021 08:33:36 UTC (1,439 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.