Computer Science > Information Theory
[Submitted on 29 Sep 2021]
Title:Signal power and energy-per-bit optimization problems in systems mMTC
View PDFAbstract:Currently, the issues of the operation of the Internet of Things technology are being actively studied. The operation of a large number of different self-powered sensors is within the framework of a massive machine-type communications scenario using random access methods. Topical issues in this type of communication are: reducing the transmission signal power and increasing the duration of the device by reducing the consumption energy per bit. Formulation and analysis of the tasks of minimizing transmission power and spent energy per bit in systems without retransmissions and with retransmissions to obtain achievability bounds. A model of the system is described, within which four problems of minimizing signal power and energy consumption for given parameters (the number of information bits, the spectral efficiency of the system, and the Packet Delivery Ratio) are formulated and described. The numerical results of solving these optimization problems are presented, which make it possible to obtain the achievability bounds for the considered characteristics in systems with and without losses. The lower bounds obtained by the Shannon formula are presented, assuming that the message length is not limited. The results obtained showed that solving the minimization problem with respect to one of the parameters (signal power or consumption energy per bit) does not minimize the second parameter. This difference is most significant for small information message lengths, which corresponds to IoT scenarios. The results obtained allow assessing the potential for minimizing transmission signal power and consumption energy per bit in random multiple access systems with massive machine-type communications scenarios. The presented problems were solved without taking into account the average delay of message transmission.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.