Computer Science > Machine Learning
[Submitted on 29 Sep 2021]
Title:Multi-class Probabilistic Bounds for Self-learning
View PDFAbstract:Self-learning is a classical approach for learning with both labeled and unlabeled observations which consists in giving pseudo-labels to unlabeled training instances with a confidence score over a predetermined threshold. At the same time, the pseudo-labeling technique is prone to error and runs the risk of adding noisy labels into unlabeled training data. In this paper, we present a probabilistic framework for analyzing self-learning in the multi-class classification scenario with partially labeled data. First, we derive a transductive bound over the risk of the multi-class majority vote classifier. Based on this result, we propose to automatically choose the threshold for pseudo-labeling that minimizes the transductive bound. Then, we introduce a mislabeling error model to analyze the error of the majority vote classifier in the case of the pseudo-labeled data. We derive a probabilistic C-bound over the majority vote error when an imperfect label is given. Empirical results on different data sets show the effectiveness of our framework compared to several state-of-the-art semi-supervised approaches.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.