Computer Science > Machine Learning
[Submitted on 29 Sep 2021]
Title:Minimal Expected Regret in Linear Quadratic Control
View PDFAbstract:We consider the problem of online learning in Linear Quadratic Control systems whose state transition and state-action transition matrices $A$ and $B$ may be initially unknown. We devise an online learning algorithm and provide guarantees on its expected regret. This regret at time $T$ is upper bounded (i) by $\widetilde{O}((d_u+d_x)\sqrt{d_xT})$ when $A$ and $B$ are unknown, (ii) by $\widetilde{O}(d_x^2\log(T))$ if only $A$ is unknown, and (iii) by $\widetilde{O}(d_x(d_u+d_x)\log(T))$ if only $B$ is unknown and under some mild non-degeneracy condition ($d_x$ and $d_u$ denote the dimensions of the state and of the control input, respectively). These regret scalings are minimal in $T$, $d_x$ and $d_u$ as they match existing lower bounds in scenario (i) when $d_x\le d_u$ [SF20], and in scenario (ii) [lai1986]. We conjecture that our upper bounds are also optimal in scenario (iii) (there is no known lower bound in this setting).
Existing online algorithms proceed in epochs of (typically exponentially) growing durations. The control policy is fixed within each epoch, which considerably simplifies the analysis of the estimation error on $A$ and $B$ and hence of the regret. Our algorithm departs from this design choice: it is a simple variant of certainty-equivalence regulators, where the estimates of $A$ and $B$ and the resulting control policy can be updated as frequently as we wish, possibly at every step. Quantifying the impact of such a constantly-varying control policy on the performance of these estimates and on the regret constitutes one of the technical challenges tackled in this paper.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.