Computer Science > Machine Learning
[Submitted on 29 Sep 2021]
Title:PyHard: a novel tool for generating hardness embeddings to support data-centric analysis
View PDFAbstract:For building successful Machine Learning (ML) systems, it is imperative to have high quality data and well tuned learning models. But how can one assess the quality of a given dataset? And how can the strengths and weaknesses of a model on a dataset be revealed? Our new tool PyHard employs a methodology known as Instance Space Analysis (ISA) to produce a hardness embedding of a dataset relating the predictive performance of multiple ML models to estimated instance hardness meta-features. This space is built so that observations are distributed linearly regarding how hard they are to classify. The user can visually interact with this embedding in multiple ways and obtain useful insights about data and algorithmic performance along the individual observations of the dataset. We show in a COVID prognosis dataset how this analysis supported the identification of pockets of hard observations that challenge ML models and are therefore worth closer inspection, and the delineation of regions of strengths and weaknesses of ML models.
Submission history
From: Pedro Yuri Arbs Paiva [view email][v1] Wed, 29 Sep 2021 14:08:26 UTC (668 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.