Computer Science > Machine Learning
[Submitted on 29 Sep 2021]
Title:Untangling Braids with Multi-agent Q-Learning
View PDFAbstract:We use reinforcement learning to tackle the problem of untangling braids. We experiment with braids with 2 and 3 strands. Two competing players learn to tangle and untangle a braid. We interface the braid untangling problem with the OpenAI Gym environment, a widely used way of connecting agents to reinforcement learning problems. The results provide evidence that the more we train the system, the better the untangling player gets at untangling braids. At the same time, our tangling player produces good examples of tangled braids.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.