Computer Science > Data Structures and Algorithms
[Submitted on 29 Sep 2021]
Title:Sublinear Time and Space Algorithms for Correlation Clustering via Sparse-Dense Decompositions
View PDFAbstract:We present a new approach for solving (minimum disagreement) correlation clustering that results in sublinear algorithms with highly efficient time and space complexity for this problem. In particular, we obtain the following algorithms for $n$-vertex $(+/-)$-labeled graphs $G$:
-- A sublinear-time algorithm that with high probability returns a constant approximation clustering of $G$ in $O(n\log^2{n})$ time assuming access to the adjacency list of the $(+)$-labeled edges of $G$ (this is almost quadratically faster than even reading the input once). Previously, no sublinear-time algorithm was known for this problem with any multiplicative approximation guarantee.
-- A semi-streaming algorithm that with high probability returns a constant approximation clustering of $G$ in $O(n\log{n})$ space and a single pass over the edges of the graph $G$ (this memory is almost quadratically smaller than input size). Previously, no single-pass algorithm with $o(n^2)$ space was known for this problem with any approximation guarantee.
The main ingredient of our approach is a novel connection to sparse-dense graph decompositions that are used extensively in the graph coloring literature. To our knowledge, this connection is the first application of these decompositions beyond graph coloring, and in particular for the correlation clustering problem, and can be of independent interest.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.