Quantum Physics
[Submitted on 29 Sep 2021]
Title:Bounds on stabilizer measurement circuits and obstructions to local implementations of quantum LDPC codes
View PDFAbstract:In this work we establish lower bounds on the size of Clifford circuits that measure a family of commuting Pauli operators. Our bounds depend on the interplay between a pair of graphs: the Tanner graph of the set of measured Pauli operators, and the connectivity graph which represents the qubit connections required to implement the circuit. For local-expander quantum codes, which are promising for low-overhead quantum error correction, we prove that any syndrome extraction circuit implemented with local Clifford gates in a 2D square patch of $N$ qubits has depth at least $\Omega(n/\sqrt{N})$ where $n$ is the code length. Then, we propose two families of quantum circuits saturating this bound. First, we construct 2D local syndrome extraction circuits for quantum LDPC codes with bounded depth using only $O(n^2)$ ancilla qubits. Second, we design a family of 2D local syndrome extraction circuits for hypergraph product codes using $O(n)$ ancilla qubits with depth $O(\sqrt{n})$. Finally, we use circuit noise simulations to compare the performance of a family of hypergraph product codes using this last family of 2D syndrome extraction circuits with a syndrome extraction circuit implemented with fully connected qubits. While there is a threshold of about $10^{-3}$ for a fully connected implementation, we observe no threshold for the 2D local implementation despite simulating error rates of as low as $10^{-6}$. This suggests that quantum LDPC codes are impractical with 2D local quantum hardware. We believe that our proof technique is of independent interest and could find other applications. Our bounds on circuit sizes are derived from a lower bound on the amount of correlations between two subsets of qubits of the circuit and an upper bound on the amount of correlations introduced by each circuit gate, which together provide a lower bound on the circuit size.
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.