Computer Science > Machine Learning
[Submitted on 29 Sep 2021]
Title:Vision-Aided Beam Tracking: Explore the Proper Use of Camera Images with Deep Learning
View PDFAbstract:We investigate the problem of wireless beam tracking on mmWave bands with the assistance of camera images. In particular, based on the user's beam indices used and camera images taken in the trajectory, we predict the optimal beam indices in the next few time spots. To resolve this problem, we first reformulate the "ViWi" dataset in [1] to get rid of the image repetition problem. Then we develop a deep learning approach and investigate various model components to achieve the best performance. Finally, we explore whether, when, and how to use the image for better beam prediction. To answer this question, we split the dataset into three clusters -- (LOS, light NLOS, serious NLOS)-like -- based on the standard deviation of the beam sequence. With experiments we demonstrate that using the image indeed helps beam tracking especially when the user is in serious NLOS, and the solution relies on carefully-designed dataset for training a model. Generally speaking, including NLOS-like data for training a model does not benefit beam tracking of the user in LOS, but including light NLOS-like data for training a model benefits beam tracking of the user in serious NLOS.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.