Computer Science > Machine Learning
[Submitted on 29 Sep 2021 (v1), last revised 5 Dec 2021 (this version, v2)]
Title:BulletTrain: Accelerating Robust Neural Network Training via Boundary Example Mining
View PDFAbstract:Neural network robustness has become a central topic in machine learning in recent years. Most training algorithms that improve the model's robustness to adversarial and common corruptions also introduce a large computational overhead, requiring as many as ten times the number of forward and backward passes in order to converge. To combat this inefficiency, we propose BulletTrain $-$ a boundary example mining technique to drastically reduce the computational cost of robust training. Our key observation is that only a small fraction of examples are beneficial for improving robustness. BulletTrain dynamically predicts these important examples and optimizes robust training algorithms to focus on the important examples. We apply our technique to several existing robust training algorithms and achieve a 2.1$\times$ speed-up for TRADES and MART on CIFAR-10 and a 1.7$\times$ speed-up for AugMix on CIFAR-10-C and CIFAR-100-C without any reduction in clean and robust accuracy.
Submission history
From: Weizhe Hua [view email][v1] Wed, 29 Sep 2021 20:32:42 UTC (439 KB)
[v2] Sun, 5 Dec 2021 01:28:50 UTC (329 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.