Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 30 Sep 2021 (v1), last revised 30 Aug 2022 (this version, v2)]
Title:USEV: Universal Speaker Extraction with Visual Cue
View PDFAbstract:A speaker extraction algorithm seeks to extract the target speaker's speech from a multi-talker speech mixture. The prior studies focus mostly on speaker extraction from a highly overlapped multi-talker speech mixture. However, the target-interference speaker overlapping ratios could vary over a wide range from 0% to 100% in natural speech communication, furthermore, the target speaker could be absent in the speech mixture, the speech mixtures in such universal multi-talker scenarios are described as general speech mixtures. The speaker extraction algorithm requires an auxiliary reference, such as a video recording or a pre-recorded speech, to form top-down auditory attention on the target speaker. We advocate that a visual cue, i.e., lip movement, is more informative than an audio cue, i.e., pre-recorded speech, to serve as the auxiliary reference for speaker extraction in disentangling the target speaker from a general speech mixture. In this paper, we propose a universal speaker extraction network with a visual cue, that works for all multi-talker scenarios. In addition, we propose a scenario-aware differentiated loss function for network training, to balance the network performance over different target-interference speaker pairing scenarios. The experimental results show that our proposed method outperforms various competitive baselines for general speech mixtures in terms of signal fidelity.
Submission history
From: Zexu Pan [view email][v1] Thu, 30 Sep 2021 03:37:10 UTC (606 KB)
[v2] Tue, 30 Aug 2022 18:41:57 UTC (812 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.