Computer Science > Machine Learning
[Submitted on 30 Sep 2021]
Title:How Neural Processes Improve Graph Link Prediction
View PDFAbstract:Link prediction is a fundamental problem in graph data analysis. While most of the literature focuses on transductive link prediction that requires all the graph nodes and majority of links in training, inductive link prediction, which only uses a proportion of the nodes and their links in training, is a more challenging problem in various real-world applications. In this paper, we propose a meta-learning approach with graph neural networks for link prediction: Neural Processes for Graph Neural Networks (NPGNN), which can perform both transductive and inductive learning tasks and adapt to patterns in a large new graph after training with a small subgraph. Experiments on real-world graphs are conducted to validate our model, where the results suggest that the proposed method achieves stronger performance compared to other state-of-the-art models, and meanwhile generalizes well when training on a small subgraph.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.