Electrical Engineering and Systems Science > Signal Processing
[Submitted on 30 Sep 2021 (v1), last revised 29 Nov 2022 (this version, v3)]
Title:Sensing Integrated DFT-Spread OFDM Waveform and Deep Learning-powered Receiver Design for Terahertz Integrated Sensing and Communication Systems
View PDFAbstract:Terahertz (THz) communications are envisioned as a key technology of next-generation wireless systems due to its ultra-broad bandwidth. One step forward, THz integrated sensing and communication (ISAC) system can realize both unprecedented data rates and millimeter-level accurate sensing. However, THz ISAC meets stringent challenges on waveform and receiver design to fully exploit the peculiarities of THz channel and transceivers. In this work, a sensing integrated discrete Fourier transform spread orthogonal frequency division multiplexing (SI-DFT-s-OFDM) system is proposed for THz ISAC, which can provide lower peak-to-average power ratio than OFDM and is adaptive to flexible delay spread of the THz channel. Without compromising communication capabilities, the proposed SI-DFT-s-OFDM realizes millimeter-level range estimation and decimeter-per-second-level velocity estimation accuracy. In addition, the bit error rate (BER) performance is improved by 5 dB gain at the $10^{-3}$ BER level compared with OFDM. At the receiver, a deep learning based ISAC receiver with two neural networks is developed to recover transmitted data and estimate target range and velocity, while mitigating the imperfections and non-linearities of THz systems. Extensive simulation results demonstrate that the proposed deep learning methods can realize mutually enhanced performance for communication and sensing, and is robust against Doppler effects, phase noise, and multi-target estimation.
Submission history
From: Yongzhi Wu [view email][v1] Thu, 30 Sep 2021 08:33:42 UTC (1,376 KB)
[v2] Wed, 23 Nov 2022 07:12:16 UTC (1,613 KB)
[v3] Tue, 29 Nov 2022 05:30:34 UTC (3,998 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.