Computer Science > Machine Learning
[Submitted on 30 Sep 2021 (v1), last revised 9 Apr 2023 (this version, v2)]
Title:Genealogical Population-Based Training for Hyperparameter Optimization
View PDFAbstract:HyperParameter Optimization (HPO) aims at finding the best HyperParameters (HPs) of learning models, such as neural networks, in the fastest and most efficient way possible. Most recent HPO algorithms try to optimize HPs regardless of the model that obtained them, assuming that for different models, same HPs will produce very similar results. We break free from this paradigm and propose a new take on preexisting methods that we called Genealogical Population Based Training (GPBT). GPBT, via the shared histories of "genealogically"-related models, exploit the coupling of HPs and models in an efficient way. We experimentally demonstrate that our method cuts down by 2 to 3 times the computational cost required, generally allows a 1% accuracy improvement on computer vision tasks, and reduces the variance of the results by an order of magnitude, compared to the current algorithms. Our method is search-algorithm agnostic so that the inner search routine can be any search algorithm like TPE, GP, CMA or random search.
Submission history
From: Antoine Scardigli [view email][v1] Thu, 30 Sep 2021 08:49:41 UTC (553 KB)
[v2] Sun, 9 Apr 2023 08:07:12 UTC (12,134 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.