Computer Science > Machine Learning
[Submitted on 30 Sep 2021 (v1), last revised 21 Oct 2021 (this version, v2)]
Title:A useful criterion on studying consistent estimation in community detection
View PDFAbstract:In network analysis, developing a unified theoretical framework that can compare methods under different models is an interesting problem. This paper proposes a partial solution to this problem. We summarize the idea of using separation condition for a standard network and sharp threshold of Erdös-Rényi random graph to study consistent estimation, compare theoretical error rates and requirements on network sparsity of spectral methods under models that can degenerate to stochastic block model as a four-step criterion SCSTC. Using SCSTC, we find some inconsistent phenomena on separation condition and sharp threshold in community detection. Especially, we find original theoretical results of the SPACL algorithm introduced to estimate network memberships under the mixed membership stochastic blockmodel were sub-optimal. To find the formation mechanism of inconsistencies, we re-establish theoretical convergence rates of this algorithm by applying recent techniques on row-wise eigenvector deviation. The results are further extended to the degree corrected mixed membership model. By comparison, our results enjoy smaller error rates, lesser dependence on the number of communities, weaker requirements on network sparsity, and so forth. Furthermore, separation condition and sharp threshold obtained from our theoretical results match classical results, which shows the usefulness of this criterion on studying consistent estimation.
Submission history
From: Huan Qing [view email][v1] Thu, 30 Sep 2021 09:27:48 UTC (87 KB)
[v2] Thu, 21 Oct 2021 03:00:06 UTC (87 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.